Palmitoylation of amyloid precursor protein regulates amyloidogenic processing in lipid rafts.
نویسندگان
چکیده
Brains of patients affected by Alzheimer's disease (AD) contain large deposits of aggregated amyloid β-protein (Aβ). Only a small fraction of the amyloid precursor protein (APP) gives rise to Aβ. Here, we report that ∼10% of APP undergoes a post-translational lipid modification called palmitoylation. We identified the palmitoylation sites in APP at Cys¹⁸⁶ and Cys¹⁸⁷. Surprisingly, point mutations introduced into these cysteines caused nearly complete ER retention of APP. Thus, either APP palmitoylation or disulfide bridges involving these Cys residues appear to be required for ER exit of APP. In later compartments, palmitoylated APP (palAPP) was specifically enriched in lipid rafts. In vitro BACE1 cleavage assays using cell or mouse brain lipid rafts showed that APP palmitoylation enhanced BACE1-mediated processing of APP. Interestingly, we detected an age-dependent increase in endogenous mouse brain palAPP levels. Overexpression of selected DHHC palmitoyl acyltransferases increased palmitoylation of APP and doubled Aβ production, while two palmitoylation inhibitors reduced palAPP levels and APP processing. We have found previously that acyl-coenzyme A:cholesterol acyltransferase (ACAT) inhibition led to impaired APP processing. Here we demonstrate that pharmacological inhibition or genetic inactivation of ACAT decrease lipid raft palAPP levels by up to 76%, likely resulting in impaired APP processing. Together, our results indicate that APP palmitoylation enhances amyloidogenic processing by targeting APP to lipid rafts and enhancing its BACE1-mediated cleavage. Thus, inhibition of palAPP formation by ACAT or specific palmitoylation inhibitors would appear to be a valid strategy for prevention and/or treatment of AD.
منابع مشابه
Amyloidogenic Processing of APP in Lipid Rafts
Increased generation of amyloid peptide (A ) derived from amyloid precursor protein (APP) is the primary pathological characteristic of Alzheimer’s disease (AD). However, the sub cellular compartment in which APP undergoes cleavage by secretases to generate A is not precisely known. Compelling evidences suggest that amyloidogenic processing of APP occurs in lipid rafts. An indirect support for ...
متن کاملOpen Access - and -Secretases and Lipid Rafts
The cerebral accumulation of -amyloid protein (A ) is thought to play a key role in the molecular pathology of Alzheimer’s disease (AD). Recent evidence indicates that both -secretase and -secretase, the membrane-associated proteases directly involved in the generation of A from its precursor, amyloid precursor protein (APP), are localized to cholesterol-rich membrane microdomains termed lipid ...
متن کاملExclusively targeting -secretase to lipid rafts by GPI-anchor addition up-regulates -site processing of the amyloid precursor protein
-Secretase (BACE, Asp-2) is a transmembrane aspartic proteinase responsible for cleaving the amyloid precursor protein (APP) to generate the soluble ectodomain sAPP and its C-terminal fragment CTF . CTF is subsequently cleaved by -secretase to produce the neurotoxic synaptotoxic amyloidpeptide (A ) that accumulates in Alzheimer’s disease. Indirect evidence has suggested that amyloidogenic APP p...
متن کاملRoles of proteolysis and lipid rafts in the processing of the amyloid precursor protein and prion protein.
In the amyloidogenic pathway, the APP (amyloid precursor protein) is proteolytically processed by the beta- and gamma-secretases to release the Abeta (amyloid-beta) peptide that is neurotoxic and aggregates in the brains of patients suffering from Alzheimer's disease. In the non-amyloidogenic pathway, APP is cleaved by alpha-secretase within the Abeta domain, precluding deposition of intact Abe...
متن کاملAmyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts
Formation of senile plaques containing the beta-amyloid peptide (A beta) derived from the amyloid precursor protein (APP) is an invariant feature of Alzheimer's disease (AD). APP is cleaved either by beta-secretase or by alpha-secretase to initiate amyloidogenic (release of A beta) or nonamyloidogenic processing of APP, respectively. A key to understanding AD is to unravel how access of these e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 27 شماره
صفحات -
تاریخ انتشار 2013